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Abstract

In the course of the chemical synthesis of human protein mitogaligin, we present here a simple method to prepare peptide thioesters
using Fmoc chemistry. The hydroxyl side chain of serine was reacted with a trichloroacetimidate Wang resin to anchor it on solid phase.
After peptide elongation and orthogonal unmasking of the C-terminus, the amino thioester was introduced under optimized conditions

to avoid epimerization.
© 2008 Elsevier Ltd. All rights reserved.
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Since developed by Kent and co-workers in 1994,
native chemical ligation technique (NCL) has been used
to synthesize various natural and non-natural polypeptides
and proteins. The chemoselective ligation between a C-ter-
minal peptide thioester and a N-terminal cysteinyl peptide
results in the formation of an amide bond. Up to now, the
preparation of the peptide thioester has remained the lim-
iting stage of this methodology. It was originally carried
out using the Boc strategy which requires of a strong acid
treatment (HF or TFMSA) to release the peptide from the
resin. As these conditions are generally not compatible with
the obtention of peptide thioesters bearing post-transla-
tional modifications, alternative methods have been devel-
oped using the milder Fmoc strategy. However, its main
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pitfall is the thioester lability under the nucleophilic condi-
tions used for the successive Fmoc removals (piperidine).
To overcome it, almost all current methods®> '# involve a
post elongation introduction of the thioester which
includes the modification of the C-terminus, a known chal-
lenging task in peptide chemistry.'> The coupling of a thiol
(thioesterification) or an amino acid thioester (amidation)
at the C-terminus of a protected peptide are among the
most user-friendly methods for peptide thioester prepara-
tion using Fmoc strategy, therefore the most promising
ones.® ' The key step of these approaches, that is, the thi-
oester introduction, can be performed either in solution® or
on solid phase.” '* The former is limited to small peptides
due to solubility problems of large protected peptides. This
difficulty can be ruled out by grafting the peptide to a resin
through its backbone’ or through the side chain of a tri-
functional amino acid,'®'* thus allowing the orthogonal
unmasking of the C-terminus. The side-chain anchoring
onto a Wang resin,'®!" a p-nitrophenylcarbonate Wang
resin,' !> a 2-chlorotrityl resin,'! or amide resins'"!* has
been reported to anchor Asp, Glu, Lys, Asn, and Gln
amino acids. Serine and threonine derivatives have been
reported to be anchored through a silyl ether linker, but
this strategy requires a time consuming multi-step
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procedure to synthesize the protected amino acid-linker
conjugate.'* To extend the applicability of the hydroxyl
side chain anchoring, we explored the synthesis of peptide
thioesters from a readily commercially available trichloro-
acetimidate Wang resin and an appropriate serine deriva-
tive (Scheme 1).

Our approach was inspired by the methodology initially
developed by Hanessian and Xie,'® and applied by Mayer
and co-workers to the on-resin head-to-tail cyclization of
peptides.'” It involves (a) the B-hydroxyl reaction of Ser
or Thr to the trichloroacetimidate derivative of Wang
resin, (b) a stepwise elongation using Fmoc chemistry, (c)
the selective allyl ester deprotection, (d) the solid phase car-
boxyl activation to couple an amino thioester, (e) a final
TFA treatment to release the deprotected peptide from
the resin. To demonstrate the feasibility of this technique,
we carried out the synthesis of peptide thioester 1 (Scheme
1). A special care was taken to minimize epimerization
which can occur during the installation of the thioester
moiety.®"** Peptide 1 is a short fragment from mitogaligin,
a cytotoxic human 97 amino acid protein involved in a new
cell death program,'® that we have planned to produce
using native chemical ligation. The sequence corresponds
to the 50-53 fragment that will be ligated in this model
study to the cysteine-containing peptide 5, the 54-58 frag-
ment (H-CTWSL-OH), affording ligated peptide 6.

For the B-hydroxyl anchoring, commercially available
trichloroacetimidate Wang resin was reacted with Fmoc—
Ser-OAll" in anhydrous THF in the presence of BF3-Et,O
as described'® (Scheme 1, step a). The loading yield (82%)
was determined by UV titration of the fluorenylmethylpi-
peridine adduct after piperidine treatment of resin 2.%°
After the Fmoc-based peptide elongation (step b), the C-
terminal allyl group was removed with Pd(PPhs),/PhSiH;
(step c¢). The purity of tripeptide 3’ was then checked by
analytical HPLC (>95%) and MS?! after TFA treatment
of an aliquot of peptide resin 3. Next, the amino thioester
4 was installed at the C-terminus. The challenge was to
achieve quantitative conversion without affecting the ste-
reochemical integrity of the C* of the C-terminal serine
(step d). The epimerization which can possibly occur was
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evaluated using the commercially available H-Thr(zBu)—
NH, instead of derivative 4. The two reference peptide
amides 7 (Ac-SRST-NH,) and 8 (Ac-SRsT-NH,) were
easily synthesized by standard Fmoc chemistry using a
Rink resin and characterized by analytical HPLC (Fig.
la) and MS.*! Taking advantage of previous studies con-
cerning low epimerization protocols for solid phase car-
boxyl activation,”® HATU/DIEA and HOAt/DCC as
coupling reagents were tested under different conditions
(Table 1). For each case, tetrapeptide 7 was released from
the resin by TFA treatment, and analyzed by HPLC and
MS.?! Purity of crude peptides was estimated by the inte-
gration of the HPLC profiles. No significant epimerization
(<1%) and good conversion (>99%) were observed (Fig.
1b) except when trying to pre-form the activated ester spe-
cies by treatment with HATU/DIEA prior to the addition
of the threonine derivative (Scheme 1, entry 2) and when a
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Fig. 1. Analytical RP-HPLC profiles of (a) a mixture of peptide amides 7
(L-form) and 8 (D form) prepared using a Rink amide resin; (b) peptide
amide 7 prepared by the hydroxyl side chain anchoring methodology; (c)
peptide thioester 1 prepared by the hydroxyl side chain anchoring
methodology. Traces a and b: gradient 0-10% B over 30 min; trace c:
0-65% B over 30 min (A: 0.1% TFA in water; B: 0.1% TFA in CH;CN/
H,0 60/40).

Lo N Lo ?

N
Fmoc” \;)J\OAII . Clgc)J\O/\O —2 . Fmoc/N\;)J\OAII b.C _  Ac-Ser(tBu)-Arg(Pbf)-Ser-OH 3

~ ~

H-Thr(Bu)-SR 4 \ d
e
R = (CH,),CO,Et Ac-Ser-Arg-Ser-Thr-SR -— Ac-Ser(tBu)-Arg(be)-?i-Thr(tBu)-SR
1

Scheme 1. Synthesis of peptide thioester 1 through hydroxyl side chain anchoring using a trichloroacetimidate Wang resin. Reagents and conditions: (a)
BF;-Et,0, THF, 0 °C; (b) (i) Fmoc SPPS; (i) Ac;O/HOBt/DIEA/DMF; (c) Pd(PPhs),/PhSiHs/CH,Cly; (d) see text; (e) TFA/TIS/H,O.
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Table 1
Coupling of H-Thr(:Bu)-NH,-HCI onto peptide resin 3 using HATU/DIEA and HOAt/DCC as coupling reagents
H-Thr(Bu)-NH,-HCI (equiv) Coupling reagent Method* DIEA (equiv) Conversion® (%) Epimerization® (%)
1 10 HATU (10 equiv) A 20 >99 <1
2 10 HATU (10 equiv) B 20 —° —°
3 5 HATU (5 equiv) A 8 >99 <1
4 5 HOALt/DCC (5 equiv) A 8 >99 <1
5 5 HOAt/DCC (5 equiv) C 8 >99 <1
6 2 HOAt/DCC (2 equiv ) A 4 40 nd

# Method A: H-Thr(/Bu)-NH,-HCI/DIEA in CH,Cl, and coupling reagents in CH,Cl,/DMF (8:2) were successively added to the resin bed. Method B:
a solid phase pre-activation procedure which consisted in adding first HATU/DIEA in CH,Cl,/DMF (8:2). After 5 min mixing, H-Thr(sBu)-NH,-HCI
was added in solid form. Method C: a solid phase pre-activation procedure which consisted in the adding of HOAt/DCC in CH,Cl,/DMF (8:2), followed
by a 5-min mixing and then the addition of H-Thr(tBu)-NH,-HCI/DIEA in CH,Cl,.

® Estimated by integration of the HPLC peaks at 214 nm.

¢ The preformed activated ester proved to be unstable under basic conditions (DIEA). Only traces of the expected amide were detected by HPLC, and

the complex mixture of by-products was not characterized.

low excess of coupling reagents (2 equiv) was used (Scheme
1, entry 6).

Before synthesizing peptide thioester 1, the preparation
of amino thioester 4 was undertaken. If the thioesterifica-
tion of an aliphatic amino acid is straightforward, the thi-
oesterification of a side chain-protected tri-functional
amino acid like threonine has not been reported yet. Our
synthesis of 4 involves the commercially available Bpoc—
Thr(tBu)-OSu derivative and 3-mercaptopropionic acid
ethyl ester as the thiol partner.?? Peptide thioester 1 was
then prepared using amino thioester 4 under the conditions
similar to entry 4 (Table 1), leading to a 94% conversion.
Repeating the same protocol was necessary to reach com-
pletion without any detectable epimerization (Fig. 1c).

Finally, HPLC-purified peptide thioester 1 was engaged
in the native chemical ligation with cysteine-containing
peptide 5 (Fig. 2). After 22 h, the ligation nearly reached
completion affording peptide 6 judging by HPLC. Such
low reaction kinetics is well known for peptide thioesters

containing a C-terminal (-branched residue like
threonine.”*
6
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Fig. 2. Analytical RP-HPLC profiles of the ligation reaction between
peptide thioester 1 and cysteine-containing peptide 5 yielding peptide 6.
Ligation procedure: Peptides were dissolved in 200 mM NaH,PO,, pH
7.5, to a final concentration of 2 mM. Benzylmercaptan (1.5%), thiophenol
(1.5%), and 20 mM TCEP were added to maintain reducing conditions
and to accelerate ligation. Gradient 10-40% B over 30 min (A: 0.1% TFA
in water; B: 0.1% TFA in CH3CN).

In conclusion, our results show that the side chain
anchoring through the reaction of a B-hydroxyl amino acid
with a trichloroacetimidate Wang resin is a valuable meth-
odology to prepare peptide thioesters by standard Fmoc
chemistry. The risk of epimerization has been prevented
by using efficient procedures for the on-solid phase o-
COOH activation. This work extends the strategy based
on side chain anchoring of tri-functional amino acids
already described and will be adapted in the future to the
synthesis of large peptide thioesters.

Note: During the redaction of this manuscript, a related
paper by Wong and co-workers has been published but
using a bromo Wang resin instead of a trichloroacetimidate
for the hydroxyl side chain anchoring.?*
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